Role of Selenium and Selenoproteins in mitochondrial function and disease

  • Anthony Perkins Griffith University, Australia
  • Joshua J. Fischer Griffith University, Australia
  • Jessica Vanderlelie Griffith University, Australia


Selenium is a key dietary micronutrient, essential for a wide range of physiological functions. The incorporation of selenium in place of sulphur to form the amino acid selenocysteine is fundamental for the synthesis of selenoproteins and reliant on dietary intake. A significant body of work has identified 25 selenoproteins with important roles in the maintenance of cellular redox homeostasis and regulation of mitochondrial function and biogenesis. The upregulation of selenoproteins have been associated with the prevention of mitochondrial dysfunction and oxidative stress through increased antioxidant function, decreased inflammatory responses and increased respiratory function within the electron transport chain of mitochondria. These mechanisms are important in supporting muscular function, cardiovascular health, reproduction and the prevention of neurological degeneration. This review collates the evidence of interactions between selenoproteins, mitochondrial function and diseases with pathophysiological mechanisms of mitochondrial dysfunction and increased oxidative stress. The beneficial effect of selenium supplementation and selenoprotein upregulation may provide the platform for the development of novel treatments to reduce the burden of diseases characterised by mitochondrial dysfunction and oxidative stress.


[1] Brauer AU, Savaskan NE. Molecular actions of selenium in the brain: neuroprotective mechanisms of an essential trace element. Rev Neurosci 2004;15:19-32.
[2] Kohrle J, Jakob F, Contempre B, Dumont JE. Selenium, the thyroid, and the endocrine system. Endocr Rev 2005;26:944-84.
[3] Boucher F, Jouan M, Moro C, Rakotovao A, Tanguy S, Leiris J. Does selenium exert cardioprotective effects against oxidative stress in myocardial ischemia? Acta Physiologica Hungarica 2008;95:187-94.
[4] Tanguy S, Grauzam S, de Leiris J, Boucher F. Impact of dietary selenium intake on cardiac health: experimental approaches and human studies. Mol Nutr Food Res 2012;56:1106-21.
[5] Oldereid NB, Thomassen Y, Purvis K. Selenium in human male reproductive organs. Hum Reprod 1998;13:2172-6.
[6] Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, et al. Role of selenium in male reproduction - a review. Animal reproduction science 2014;146:55-62.
[7] Vunta H, Davis F, Palempalli UD, Bhat D, Arner RJ, Thompson JT, et al. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12, 14-prostaglandin J2 in macrophages. Journal of Biological Chemistry 2007;282:17964-73.
[8] Tinggi U. Selenium: its role as antioxidant in human health. Environ Health Prev Med 2008;13:102-8.
[9] Rayman MP. The importance of selenium to human health. Lancet 2000;356:233-41.
[10] Chen X, Yang G, Chen J, Chen X, Wen Z, Ge K. Studies on the relations of selenium and Keshan disease. Biol Trace Elem Res 1980;2:91-107.
[11] Loscalzo J. Keshan Disease, Selenium Deficiency, and the Selenoproteome. New England Journal of Medicine 2014;370:1756-60.
[12] Gromer S, Eubel JK, Lee BL, Jacob J. Human selenoproteins at a glance. Cell Mol Life Sci 2005;62:2414-37.
[13] Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev 2014;94:739-77.
[14] Rayman MP. Selenium and human health. The Lancet 2012;379:1256-68.
[15] Finley JW. Bioavailability of selenium from foods. Nutr Rev 2006;64:146-51.
[16] Lymbury RS, Marino MJ, Perkins AV. Effect of dietary selenium on the progression of heart failure in the ageing spontaneously hypertensive rat. Mol Nutr Food Res 2010;54:1436-44.
[17] Khera A, Dong LF, Holland O, Vanderlelie J, Pasdar EA, Neuzil J, et al. Selenium supplementation induces mitochondrial biogenesis in trophoblasts. Placenta 2015;36:863-9.
[18] Mendelev N, Mehta SL, Witherspoon S, He Q, Sexton JZ, Li PA. Upregulation of human selenoprotein H in murine hippocampal neuronal cells promotes mitochondrial biogenesis and functional performance. Mitochondrion 2011;11:76-82.
[19] Johansson L, Gafvelin G, Arner ESJ. Selenocysteine in proteins - properties and biotechnological use. Biochimica Et Biophysica Acta-General Subjects 2005;1726:1-13.
[20] Flohe L. The labour pains of biochemical selenology: the history of selenoprotein biosynthesis. Biochim Biophys Acta 2009;1790:1389-403.
[21] Hatfield DL, Choi IS, Ohama T, Jung J-E, Diamond AM. Selenocysteine tRNA[Ser]Sec Isoacceptors as Central Components in Selenoprotein Biosynthesis in Eukaryotes. In: Burk RF, editor. Selenium in Biology and Human Health. New York, NY: Springer New York; 1994. p. 25-44.
[22] Itoh Y, Chiba S, Sekine S, Yokoyama S. Crystal structure of human selenocysteine tRNA. Nucleic Acids Res 2009;37:6259-68.
[23] Hatfield DL, Carlson BA, Xu XM, Mix H, Gladyshev VN. Selenocysteine incorporation machinery and the role of selenoproteins in development and health. Prog Nucleic Acid Res Mol Biol 2006;81:97-142.
[24] Hatfield DL, Gladyshev VN, Park J, Park S, Chittum H, Huh J, et al. Biosynthesis of selenocysteine and its incorporation into protein as the 21st amino acid. Comprehensive natural products chemistry 1999;4:353-80.
[25] Steinbrenner H, Speckmann B, Klotz L-O. Selenoproteins: Antioxidant selenoenzymes and beyond. Archives of Biochemistry and Biophysics 2016;595:113-9.
[26] Chittum HS, Hill KE, Carlson BA, Lee BJ, Burk RF, Hatfield DL. Replenishment of selenium deficient rats with selenium results in redistribution of the selenocysteine tRNA population in a tissue specific manner. Biochim Biophys Acta 1997;1359:25-34.
[27] Diamond AM, Choi IS, Crain PF, Hashizume T, Pomerantz SC, Cruz R, et al. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA([Ser]Sec). The Journal of biological chemistry 1993;268:14215-23.
[28] Howard MT, Carlson BA, Anderson CB, Hatfield DL. Translational redefinition of UGA codons is regulated by selenium availability. The Journal of biological chemistry 2013;288:19401-13.
[29] Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. The EMBO Journal 2000;19:306-14.
[30] Fletcher JE, Copeland PR, Driscoll DM, Krol A. The selenocysteine incorporation machinery: Interactions between the SECIS RNA and the SECIS-binding protein SBP2. Rna-a Publication of the Rna Society 2001;7:1442-53.
[31] Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J 2000;19:4796-805.
[32] Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, et al. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep 2000;1:158-63.
[33] Low SC, Grundner-Culemann E, Harney JW, Berry MJ. SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy. EMBO J 2000;19:6882-90.
[34] Papp LV, Lu J, Striebel F, Kennedy D, Holmgren A, Khanna KK. The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol Cell Biol 2006;26:4895-910.
[35] Xu XM, Carlson BA, Irons R, Mix H, Zhong NX, Gladyshev VN, et al. Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochemical Journal 2007;404:115-20.
[36] Carlson BA, Xu XM, Gladyshev VN, Hatfield DL. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. The Journal of biological chemistry 2005;280:5542-8.
[37] Hondal RJ, Nilsson BL, Raines RT. Selenocysteine in native chemical ligation and expressed protein ligation. J Am Chem Soc 2001;123:5140-1.
[38] Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics : integrated biometal science 2014;6:25-54.
[39] Rosen BP, Liu Z. Transport pathways for arsenic and selenium: a minireview. Environ Int 2009;35:512-5.
[40] Lazard M, Blanquet S, Fisicaro P, Labarraque G, Plateau P. Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. The Journal of biological chemistry 2010;285:32029-37.
[41] Olson GE, Winfrey VP, NagDas SK, Hill KE, Burk RF. Apolipoprotein E Receptor-2 (ApoER2) Mediates Selenium Uptake from Selenoprotein P by the Mouse Testis. Journal of Biological Chemistry 2007;282:12290-7.
[42] Olson GE, Winfrey VP, Hill KE, Burk RF. Megalin Mediates Selenoprotein P Uptake by Kidney Proximal Tubule Epithelial Cells. Journal of Biological Chemistry 2008;283:6854-60.
[43] Powers SK, Kavazis AN, McClung JM. Oxidative stress and disuse muscle atrophy. J Appl Physiol (1985) 2007;102:2389-97.
[44] Benzi G, Moretti A. Are reactive oxygen species involved in Alzheimer's disease? Neurobiol Aging 1995;16:661-74.
[45] Kim GH, Kim JE, Rhie SJ, Yoon S. The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental neurobiology 2015;24:325-40.
[46] Quines CB, Rosa SG, Chagas PM, da Rocha JT, Dobrachinski F, Carvalho NR, et al. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats. Amino acids 2016;48:137-48.
[47] Li XL, Wong YS, Xu G, Chan JC. Selenium-enriched Spirulina protects INS-1E pancreatic beta cells from human islet amyloid polypeptide-induced apoptosis through suppression of ROS-mediated mitochondrial dysfunction and PI3/AKT pathway. European journal of nutrition 2015;54:509-22.
[48] Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005;307:384-7.
[49] Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787-95.
[50] Russell LK, Finck BN, Kelly DP. Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol 2005;38:81-91.
[51] Stanley WC, Hoppel CL. Mitochondrial dysfunction in heart failure: potential for therapeutic interventions? Cardiovasc Res 2000;45:805-6.
[52] Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol 2014;73:26-33.
[53] Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, et al. Characterization of mammalian selenoproteomes. Science 2003;300:1439-43.
[54] Toppo S, Vanin S, Bosello V, Tosatto SCE. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxidants & Redox Signaling 2008;10:1501-13.
[55] Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011;15:1957-97.
[56] Arthur J. The glutathione peroxidases. Cellular and Molecular Life Sciences CMLS 2001;57:1825-35.
[57] Yamamoto Y, Nagata Y, Niki E, Watanabe K, Yoshimura S. Plasma glutathione peroxidase reduces phosphatidylcholine hydroperoxide. Biochem Biophys Res Commun 1993;193:133-8.
[58] Avissar N, Ornt DB, Yagil Y, Horowitz S, Watkins RH, Kerl EA, et al. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am J Physiol 1994;266:C367-75.
[59] Sherrer RL, Araiso Y, Aldag C, Ishitani R, Ho JM, Söll D, et al. C-terminal domain of archaeal O-phosphoseryl-tRNA kinase displays large-scale motion to bind the 7-bp D-stem of archaeal tRNASec. Nucleic acids research 2011;39:1034-41.
[60] Maiorino FM, Brigelius-Flohé R, Aumann K, Roveri A, Schomburg D, Flohé L. [5] Diversity of glutathione peroxidases. Methods in enzymology 1995;252:38-53.
[61] Schnurr K, Belkner J, Ursini F, Schewe T, Kuhn H. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. The Journal of biological chemistry 1996;271:4653-8.
[62] Nomura K, Imai H, Koumura T, Arai M, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. The Journal of biological chemistry 1999;274:29294-302.
[63] Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, et al. Active sites of thioredoxin reductases: why selenoproteins? Proceedings of the National Academy of Sciences of the United States of America 2003;100:12618-23.
[64] Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med 2014;66:75-87.
[65] Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 2010;396:120-4.
[66] Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000;267:6102-9.
[67] Zhong L, Arner ES, Ljung J, Aslund F, Holmgren A. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. The Journal of biological chemistry 1998;273:8581-91.
[68] Gladyshev VN, Jeang KT, Stadtman TC. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proceedings of the National Academy of Sciences of the United States of America 1996;93:6146-51.
[69] Arner ESJ. Focus on mammalian thioredoxin reductases - Important selenoproteins with versatile functions. Biochimica Et Biophysica Acta-General Subjects 2009;1790:495-526.
[70] Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. The Journal of biological chemistry 2003;278:36027-31.
[71] Johansson C, Lillig CH, Holmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. Journal of Biological Chemistry 2004;279:7537-43.
[72] Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, et al. SelT, SelW, SelH, and Rdx12: Genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 2007;46:6871-82.
[73] Novoselov SV, Kryukov GV, Xu XM, Carlson BA, Hatfield DL, Gladyshev VN. Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. Journal of Biological Chemistry 2007;282:11960-8.
[74] Panee J, Stoytcheva ZR, Liu W, Berry MJ. Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. Journal of Biological Chemistry 2007;282:23759-65.
[75] Mehta SL, Mendelev N, Kumari S, Andy Li P. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway. Int J Biochem Cell Biol 2013;45:604-11.
[76] Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 2008;80:30-9.
[77] Moreira PI, Carvalho C, Zhu XW, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochimica Et Biophysica Acta-Molecular Basis of Disease 2010;1802:2-10.
[78] Mehta SL, Kumari S, Mendelev N, Li PA. Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci 2012;13:79.
[79] Lymbury R, Venardos K, Perkins AV. Effect of sodium selenite-enriched reperfusion solutions on rat cardiac ischemia reperfusion injury. Biol Trace Elem Res 2006;114:197-206.
[80] Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, et al. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999;285:1393-6.
[81] Schneider M, Forster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J 2009;23:3233-42.
[82] Horibata Y, Hirabayashi Y. Identification and characterization of human ethanolaminephosphotransferase1. J Lipid Res 2007;48:503-8.
[83] Dudkiewicz M, Szczepinska T, Grynberg M, Pawlowski K. A novel protein kinase-like domain in a selenoprotein, widespread in the tree of life. PLoS One 2012;7:e32138.
[84] Meyer J, Moulis JM, Gaillard J, Lutz M. Replacement of Sulfur by Selenium in Iron-Sulfur Proteins. Advances in Inorganic Chemistry 1992;38:73-115.
[85] Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 2007;83:84-92.
[86] Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 2001;88:529-35.
[87] Alehagen U, Johansson P, Bjornstedt M, Rosen A, Post C, Aaseth J. Relatively high mortality risk in elderly Swedish subjects with low selenium status. European journal of clinical nutrition 2016;70:91-6.
[88] Salonen JT, Alfthan G, Huttunen JK, Pikkarainen J, Puska P. Association between Cardiovascular Death and Myocardial-Infarction and Serum Selenium in a Matched-Pair Longitudinal-Study. Lancet 1982;2:175-9.
[89] Suadicani P, Hein HO, Gyntelberg F. Serum selenium concentration and risk of ischaemic heart disease in a prospective cohort study of 3000 males. Atherosclerosis 1992;96:33-42.
[90] Kenet G, Freedman J, Shenkman B, Regina E, Brok-Simoni F, Holzman F, et al. Plasma glutathione peroxidase deficiency and platelet insensitivity to nitric oxide in children with familial stroke. Arterioscler Thromb Vasc Biol 1999;19:2017-23.
[91] Venardos KM, Perkins A, Headrick J, Kaye DM. Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem 2007;14:1539-49.
[92] Kuster GM, Pimentel DR, Adachi T, Ido Y, Brenner DA, Cohen RA, et al. alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 2005;111:1192-8.
[93] Gu QP, Sun Y, Ream LW, Whanger PD. Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol Cell Biochem 2000;204:49-56.
[94] Whanger PD. Selenoprotein W: a review. Cell Mol Life Sci 2000;57:1846-52.
[95] Whanger PD. Selenoprotein expression and function-selenoprotein W. Biochim Biophys Acta 2009;1790:1448-52.
[96] Lescure A, Rederstorff M, Krol A, Guicheney P, Allamand V. Selenoprotein function and muscle disease. Biochim Biophys Acta 2009;1790:1569-74.
[97] Vendeland SC, Beilstein MA, Yeh JY, Ream W, Whanger PD. Rat skeletal muscle selenoprotein W: cDNA clone and mRNA modulation by dietary selenium. Proceedings of the National Academy of Sciences of the United States of America 1995;92:8749-53.
[98] Peng T, Li Y, Yang Y, Niu C, Morgan-Capner P, Archard LC, et al. Characterization of enterovirus isolates from patients with heart muscle disease in a selenium-deficient area of China. J Clin Microbiol 2000;38:3538-43.
[99] Li GS, Wang F, Kang D, Li C. Keshan disease: an endemic cardiomyopathy in China. Hum Pathol 1985;16:602-9.
[100] Li Y, Yang Y, Chen H. [Detection of enteroviral RNA in paraffin-embedded myocardial tissue from patients with Keshan by nested PCR]. Zhonghua Yi Xue Za Zhi 1995;75:344-5, 82.
[101] Russell LK, Finck BN, Kelly DP. Mouse models of mitochondrial dysfunction and heart failure. Journal of molecular and cellular cardiology 2005;38:81-91.
[102] Rivera MT, De Souza AP, Moreno AHM, Xavier SS, Gomes JAS, Rocha MOC, et al. Progressive Chagas' cardiomyopathy is associated with low selenium levels. American Journal of Tropical Medicine and Hygiene 2002;66:706-12.
[103] Jurynec MJ, Xia RH, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, et al. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proceedings of the National Academy of Sciences of the United States of America 2008;105:12485-90.
[104] Petit N, Lescure A, Rederstorff M, Krol A, Moghadaszadeh B, Wewer UM, et al. Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet 2003;12:1045-53.
[105] Moreno-Reyes R, Mathieu F, Boelaert M, Begaux F, Suetens C, Rivera MT, et al. Selenium and iodine supplementation of rural Tibetan children affected by Kashin-Beck osteoarthropathy. Am J Clin Nutr 2003;78:137-44.
[106] Vanderpas JB, Contempre B, Duale NL, Goossens W, Bebe N, Thorpe R, et al. Iodine and Selenium Deficiency Associated with Cretinism in Northern Zaire. American Journal of Clinical Nutrition 1990;52:1087-93.
[107] Arbogast S, Ferreiro A. Selenoproteins and Protection against Oxidative Stress: Selenoprotein N as a Novel Player at the Crossroads of Redox Signaling and Calcium Homeostasis. Antioxidants & Redox Signaling 2010;12:893-904.
[108] Castets P, Bertrand AT, Beuvin M, Ferry A, Le Grand F, Castets M, et al. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet 2011;20:694-704.
[109] Le Goff P. Is fibromyalgia a muscle disorder? Joint Bone Spine 2006;73:239-42.
[110] Reinhard P, Schweinsberg F, Wernet D, Kotter I. Selenium status in fibromyalgia. Toxicol Lett 1998;96-97:177-80.
[111] Chariot P, Bignani O. Skeletal muscle disorders associated with selenium deficiency in humans. Muscle Nerve 2003;27:662-8.
[112] Sendur OF, Tastaban E, Turan Y, Ulman C. The relationship between serum trace element levels and clinical parameters in patients with fibromyalgia. Rheumatology international 2008;28:1117-21.
[113] Chen J, Berry MJ. Selenium and selenoproteins in the brain and brain diseases. J Neurochem 2003;86:1-12.
[114] Hashimoto M, Rockenstein E, Crews L, Masliah E. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromolecular Med 2003;4:21-36.
[115] Reeves MA, Bellinger FP, Berry MJ. The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxidants & redox signaling 2010;12:809-18.
[116] Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 2007;9:775-806.
[117] Hwang DY, Cho JS, Oh JH, Shim SB, Jee SW, Lee SH, et al. Differentially expressed genes in transgenic mice carrying human mutant presenilin-2 (N141I): correlation of selenoprotein M with Alzheimer's disease. Neurochem Res 2005;30:1009-19.
[118] Chen P, Wang R-R, Ma X-J, Liu Q, Ni J-Z. Different forms of selenoprotein M differentially affect Aβ aggregation and ROS generation. International journal of molecular sciences 2013;14:4385-99.
[119] Xiong S, Markesbery WR, Shao C, Lovell MA. Seleno-L-methionine protects against beta-amyloid and iron/hydrogen peroxide-mediated neuron death. Antioxid Redox Signal 2007;9:457-67.
[120] Zeevalk GD, Razmpour R, Bernard LP. Glutathione and Parkinson's disease: is this the elephant in the room? Biomedicine & Pharmacotherapy 2008;62:236-49.
[121] Ridet JL, Bensadoun JC, Deglon N, Aebischer P, Zurn AD. Lentivirus-mediated expression of glutathione peroxidase: neuroprotection in murine models of Parkinson's disease. Neurobiol Dis 2006;21:29-34.
[122] Bensadoun JC, Mirochnitchenko O, Inouye M, Aebischer P, Zurn AD. Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice. Eur J Neurosci 1998;10:3231-6.
[123] Islam F, Zia S, Sayeed I, Zafar KS, Ahmad AS. Selenium-induced alteration of lipids, lipid peroxidation, and thiol group in circadian rhythm centers of rat. Biol Trace Elem Res 2002;90:203-14.
[124] Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radical Biology and Medicine 2003;34:496-502.
[125] Burton GJ, Yung HW, Murray AJ. Mitochondrial - Endoplasmic reticulum interactions in the trophoblast: Stress and senescence. Placenta 2016 S0143-4004(16)30052-2.
How to Cite
PERKINS, Anthony; FISCHER, Joshua J.; VANDERLELIE, Jessica. Role of Selenium and Selenoproteins in mitochondrial function and disease. Journal of International Society of Antioxidants in Nutrition & Health, [S.l.], v. 3, n. 5, nov. 2016. ISSN 2495-9405. Available at: <>. Date accessed: 28 mar. 2017. doi:


Disease, Function, Mitochondria, Selenium, Selenoprotein